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Context

Zinc chloride is a soluble salt contained in ashes resulting from the incineration of a
radioactive wastes including neoprene and polyvinylchloride.

¢S

Deleterious effects on Portland cement:
« setting is strongly delayed and can be inhibited at high zinc chloride

loading (Arliguie 1985),

* hydration and hardening are slowed down (Ortego 1989).
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From Cau-dit-Coumes and al, ICCC 2007

Precipitation of 3,-Zn(OH), or
Zn,Ca(OH)s.2H,0 over the cement
grains has been postulated to explain
the delay in cement hydration
(Arliguie 1985).

It is necessary to select a binder having
a different chemistry, more compatible
with the waste:

a calcium sulfoaluminate cement.
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Objective: to investigate the influence of zinc chloride on
e the hydration of CSA cements.

N

Overview

— ], Materials and Methods
— |I. Kinetics of hydration

—II. Mineralogical evolution

— V. Conclusion and prospects
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. Materials:

Pd s cement composition and hydration

Mineralogical composition of the CSA clinker (KTS 100 provided by Bellitex):
CE:J Minerals (% weight)

CAS| CS | C,FT | C,A, | Periclase | CS | Quartz
71 16 6.6 3.1 2.6 0.5 0.5

Two main features of CSA cement hydration:

Hydrates proportion depend of the amount

of gypsum mixed with the clinker. Major heat output

100
% 1 AH,

semi-adiabatic Langavant calorimetry
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:> Influence of temperature and gypsum content has to be studied.
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'ﬂ Materials and methods:

e preparation of specimens

(&) Two kinds of specimens © CSA cements preparation: mixing of ground CSA
P clinker with gypsum (0-10%, 20% and 35%).

were prepared:
. pastes for XRD analysis * Mixing solution: dissolution of ZnCl, salt (0 or 0.5
(hydration stops at 5min, 1h, 2h, mol/l) into distilled water.

Sh, 24h, 7days,...) « Water to cement ratio: 0.55 for pastes and mortars.
« mortars for semi-adiabatic .

_ Sand to cement ratio : 3, sand and cement pre-mixed.
Langavant calorimetry.

After mixing, samples were cured 7 days in sealed plastic bag at 20°C or
were submitted to a thermal cycle in an oven.

80 semi-adiabatic Langavant calorimetry
Thermal cycles: tempera_ture profiles made © . Temperature evolution
from. thg temperaturt.a.evolutlon of mortars under 2 recorded on CSA mortars
semi-adiabatic conditions and applied on pastes &
to reproduce the temperature rise and decrease ;& 40
which may occur in a massive structure during o
cement hydration. 20
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Time (h)
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e Materials and methods:

< Mines preparation of specimens
80 — : :
_ semi-adiabatic curing
CEJ Differences between the thermal $
— evolution of two mortar samples © 60
cured at 20°C or under semi- g I
adiabatic conditions were very S 40 - mortars, 10% gypsum
significant. £ ’/-\ _
= 20°C curing
20 — T T T

0 2 4 6 8 1012 14 16 18 20

Time (h)
inner temperature

80
= Temperature profiles were defined
g by interpolating in 20-40 segments
% 60 1 calorimetry paste the curves recorded on mortars.
] recorded on 20% gypsum _ _
= mortar 0.5 mol/l ZnCl, Some correctlons were required to
© 40 _ keep the inner temperature of the

temperature profile paste near that of the mortar under
20 applied to the paste semi-adiabatic curing.
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Time (h)
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Kinetics of hydration:
influence of gypsum content
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Two effects were observed when the gypsum content increased from 0 to 10%:
« the cumulated heat output was reduced when the gypsum content exceeded 5%,
« the induction period decreased strongly especially at low gypsum contents.
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Kinetics of hydration:
Influence of gypsum content
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Beyond a gypsum content of 10%, heat output and induction
period did not vary anymore.
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* Kinetics of hydration:
e Influence of gypsum content
¢ deDouai ; .
Mlnera_loglcal StUdy on — 100? (based on XRD relative peak areas) 4
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Gypsum reactivity:
+ gypsum dissolution before that of yeelimite,
« almost total depletion at 5h.
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‘_m Kinetics of hydration:

Corive e et

Mi )
Qenc',"u? influence of thermal cycle
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The thermal cycle promoted the dissolution of yeelimite: amount of yeelimite consumed
at 1 day higher than that depleted at 7 days when curing is performed at 20°C.
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- Kinetics of hydration:
% Mines

- de Douai influence of zinc chloride addition
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» A retardation was observed, but its magnitude was much smaller than
that recorded with OPC.

 Setting inhibition was never observed: setting occurred in less than 2h
with gypsum, and in less than 24h without it.
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1%w Kinetics of hydration:
5 Mines influence of zinc chloride addition

Investigating the reactivity of zinc cations and chloride anions
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Kinetics of hydration:

ot figtrny
Corioe e Fen et

Byt influence of zinc chloride addition

(EJ Investigating the reactivity of zinc cations and chloride anions
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Temperature of the mixing solution: 20°C acceleration SO,% >>2NO, >2 Cl- delay

Salt concentration : 0.5 mol/l >

Chloride anions strongly slowed down hydration but zinc cations accelerated it.
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Mineralogical evolution:

influence of gypsum

7 : a Gypsum promoted ettringite
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Mineralogical evolution:
Influence of thermal cycle and gypsum content

0% gypsum 10% gypsum
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Thermal cycle promoted precipitation of calcium monosulfoaluminate hydrate
instead of ettringite. This effect was enhanced in absence of gypsum. CAH,, was
unstable with gypsum and/or temperature rise.
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Mineralogical evolution:
Influence of thermal cycle and gypsum content
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With 20% and more of gypsum, the thermal cycle had no significant effect on the
mineralogy: gypsum stabilized ettringite in spite of the temperature increase.
Gypsum influence seemed to prevail over temperature effect.
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Mineralogical evolution:
influence of zinc chloride addition

7 days XRD
Chloride-containing minerals were identified: 0% gypsum
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*m Mineralogy evolution:

wgﬂ,;gg influence of zinc chloride addition
Influence 7 days XRD Influence
CEJ of thermal cycle of gypsum (20%)
—— g K 0% gypsum, 0.5 mol/l 0% gypsum, 0.5 mol/l
0% gypsum, 0.5 mol/l, 20% gypsum, 0.5 mol/l
thermal cycle
M E
\
E
£ r Y
E \
K E
F
' = E
< %‘S Rl
Wi\ F
O o3 Ej E KE
i ! : ‘ u A P ML Lt mmmL

K: 3Ca0-Al,04-0.5CaCl,-0.5CaS0,-12H,0 ; F: 3Ca0-Al,04-CaCl,-10H,0
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7 days XRD

Mineralogical evolution:
influence of zinc chloride addition

With thermal cycle and
20% gypsum

EY
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F: 3Ca0-Al,0,-CaCl,-10H,0

0% gypsum, 0.5 mol/Il
20% gypsum, 0.5 mol/l,

thermal cycle

Gypsum promoted ettringite precipitation instead of all AFm phases. However, Friedel’s salt
seemed to be stabilized by a temperature rise and a strong chloride concentration.
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C@ Conclusion

CSA cements showed a much better compatibility with zinc chloride than
OPC: hydration was slightly slowed down but setting inhibition was never
observed.

Chloride anions induced a strong retardation, but this effect was balanced
by zinc cations and sulfate anions from gypsum.

In the presence of zinc chloride, the mineralogy observations revealed the
precipitation of chloro-AFm such as Kuzel's salt and Friedel’s salt.

The thermal history of the samples proved to be a key parameter since a

temperature rise accelerated the rate of hydration and modified the nature
of the hydrates, particularly with a low gypsum content.
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« to find the location of zinc cations,
« to identify the mechanisms which inhibit or accelerate the hydration,
« toinvestigate the influence of zinc chloride and temperature on the

properties of the hardened materials (porosity, compressive strength,
length change, durability,...).
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