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Context
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Zinc chloride is a soluble salt contained in ashes  resulting from the incineration of α
radioactive wastes  including neoprene and polyvinylchloride.

Deleterious effects on Portland cement:
• setting is strongly delayed and can be inhibited at high zinc chloride 

loading (Arliguie 1985),
• hydration and hardening are slowed down (Ortego 1989).

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120 140

Time (h)

Te
m

pe
ra

tu
re

 ri
se

 (°
C

)

Fr
om

 C
au

-d
it-

C
ou

m
es

 a
nd

 a
l, 

IC
C

C
 2

00
7

> 4 days

Portland Cement with 
0,1 mol/L ZnCl2
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without ZnCl2

< 24 h

Precipitation of β2-Zn(OH)2 or 
Zn2Ca(OH)6.2H2O over the cement 

grains has been postulated to explain 
the delay in cement hydration

(Arliguie 1985). 

It is necessary to select a binder having 
a different chemistry, more compatible 

with the waste: 
a calcium sulfoaluminate cement.
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Objective: to investigate the influence of zinc chloride on 
the hydration of CSA cements.

I. Materials and Methods

II. Kinetics of hydration

III. Mineralogical evolution

IV. Conclusion and prospects

Overview



Materials:
cement composition and hydration
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Mineralogical composition of the CSA clinker (KTS 100 provided by Bellitex):

Minerals (% weight)
C4A3S C2S C3FT C12A7 Periclase CS Quartz

71 16 6.6 3.1 2.6 0.5 0.5

Two main features of CSA cement hydration:

Major heat output
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Influence of temperature and gypsum content has to be studied.

Hydrates proportion depend of the amount 
of gypsum mixed with the clinker.
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Materials and methods:
preparation of specimens
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• CSA cements preparation: mixing of ground CSA 
clinker with gypsum (0-10%, 20% and 35%).

• Mixing solution: dissolution of ZnCl2 salt (0 or 0.5 
mol/l) into distilled water.

• Water to cement ratio: 0.55 for pastes and mortars.
• Sand to cement ratio : 3, sand and cement pre-mixed.

Two kinds of specimens 
were prepared:

• pastes for XRD analysis, 
(hydration stops at 5min, 1h, 2h, 
5h, 24h, 7days,…) 

• mortars for semi-adiabatic 
Langavant calorimetry.

After mixing, samples were cured 7 days in sealed plastic bag at 20°C or 
were submitted to a thermal cycle in an oven.

20

40

60

80

0 50 100 150
Time (h)

Te
m

pe
ra

tu
re

 (°
C

)

Temperature evolution 
recorded on CSA mortars
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Thermal cycles: temperature profiles made 
from the temperature evolution of mortars under 
semi-adiabatic conditions and applied on pastes 
to reproduce the temperature rise and decrease 
which may occur in a massive structure during 
cement hydration.
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Materials and methods:
preparation of specimens

Differences between the thermal 
evolution of two mortar samples 
cured at 20°C or under semi-
adiabatic conditions were very 
significant.
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Temperature profiles were defined 
by interpolating in 20-40 segments 
the curves recorded on mortars. 

Some corrections were required to 
keep the inner temperature of the 

paste near that of the mortar under 
semi-adiabatic curing.



Kinetics of hydration:
influence of gypsum content
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Two effects were observed when the gypsum content increased from 0 to 10%:
• the cumulated heat output was reduced when the gypsum content exceeded 5%,
• the induction period decreased strongly especially at low gypsum contents.



Kinetics of hydration:
influence of gypsum content
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Beyond a gypsum content of 10%, heat output and induction 
period did not vary anymore.
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Kinetics of hydration:
influence of gypsum content

Without gypsum: 
• yeelimite started to react much later, 

in agreement with the long induction 
period previously observed. 

• Yeelimite was almost totally depleted 
at 24h while with gypsum, 10 to 20% 
were still unreacted. 

Mineralogical study on 
pastes with thermal cycles :

Gypsum reactivity:
• gypsum dissolution before that of yeelimite,
• almost total depletion at 5h.
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Kinetics of hydration:
influence of thermal cycle
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The thermal cycle promoted the dissolution of yeelimite: amount of yeelimite consumed 
at 1 day higher than that depleted at 7 days when curing is performed at 20°C.
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Kinetics of hydration:
influence of zinc chloride addition
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• A retardation was observed, but its magnitude was much smaller than 
that recorded with OPC.

• Setting inhibition was never observed: setting occurred in less than 2h 
with gypsum, and in less than 24h without it.  
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Kinetics of hydration:
influence of zinc chloride addition

CaCl2

ZnCl2

Zn(NO3)2

Ca(NO3)2

CaSO4ZnSO4

Salt concentration : 0.5 mol/l

acceleration      Zn2+ > Ca2+ delay

Investigating the reactivity of zinc cations and chloride anions

0% gypsum
H2O

Temperature of the mixing solution: 20°C



Kinetics of hydration:
influence of zinc chloride addition
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Investigating the reactivity of zinc cations and chloride anions
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Chloride anions strongly slowed down hydration but zinc cations accelerated it.
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influence of thermal cycle and gypsum content

24h XRD

E: C3A.3CS.H32
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Thermal cycle promoted precipitation of calcium monosulfoaluminate hydrate 
instead of ettringite. This effect was enhanced in absence of gypsum. CAH10 was 

unstable with gypsum and/or temperature rise.
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Mineralogical evolution:
influence of thermal cycle and gypsum content

24h XRD

E: C3A.3CS.H32
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A: AH3

With 20% and more of gypsum, the thermal cycle had no significant effect on the 
mineralogy: gypsum stabilized ettringite in spite of the temperature increase. 

Gypsum influence seemed to prevail over temperature effect.



Mineralogical evolution:
influence of zinc chloride addition 7 days XRD
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Mineralogy evolution:
influence of zinc chloride addition
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Mineralogical evolution:
influence of zinc chloride addition
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Gypsum promoted ettringite precipitation instead of all AFm phases. However, Friedel’s salt 
seemed to be stabilized by a temperature rise and a strong chloride concentration.
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Conclusion

CSA  cements showed a much better compatibility with zinc chloride than 
OPC: hydration was slightly slowed down but setting inhibition was never 
observed. 

Chloride anions induced a strong retardation, but this effect was balanced 
by zinc cations and sulfate anions from gypsum.

In the presence of zinc chloride, the mineralogy observations revealed the 
precipitation of chloro-AFm such as Kuzel’s salt and Friedel’s salt.

The thermal history of the samples proved to be a key parameter since a 
temperature rise accelerated the rate of hydration and modified the nature 
of the hydrates, particularly with a low gypsum content.
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Prospects

• to find the location of zinc cations,

• to identify the mechanisms which inhibit or accelerate the hydration,

• to investigate the influence of zinc chloride and temperature on the 
properties of the hardened materials (porosity, compressive strength, 
length change, durability,…).


